direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23.C8, C24.3C8, M5(2)⋊10C22, C8.123(C2×D4), (C2×C8).389D4, C4○(C23.C8), (C22×C4).6C8, (C2×M5(2))⋊8C2, C23.17(C2×C8), (C23×C4).22C4, (C22×C8).19C4, C8.30(C22⋊C4), C4.25(C22⋊C8), (C2×C8).384C23, C4.49(C2×M4(2)), (C2×C4).81M4(2), (C2×M4(2)).29C4, C22.12(C22×C8), C22.44(C22⋊C8), (C22×C8).415C22, (C22×M4(2)).23C2, (C2×M4(2)).328C22, (C2×C4).38(C2×C8), (C2×C8).149(C2×C4), C2.24(C2×C22⋊C8), C4.115(C2×C22⋊C4), (C22×C4).486(C2×C4), (C2×C4).558(C22×C4), (C2×C4).362(C22⋊C4), SmallGroup(128,846)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23.C8
G = < a,b,c,d,e | a2=b2=c2=d2=1, e8=d, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Subgroups: 196 in 118 conjugacy classes, 60 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C16, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C2×C16, M5(2), M5(2), C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23.C8, C2×M5(2), C22×M4(2), C2×C23.C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C23.C8, C2×C22⋊C8, C2×C23.C8
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 25)(2 10)(3 19)(5 29)(6 14)(7 23)(9 17)(11 27)(13 21)(15 31)(18 26)(22 30)
(1 25)(2 18)(3 27)(4 20)(5 29)(6 22)(7 31)(8 24)(9 17)(10 26)(11 19)(12 28)(13 21)(14 30)(15 23)(16 32)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,25)(2,10)(3,19)(5,29)(6,14)(7,23)(9,17)(11,27)(13,21)(15,31)(18,26)(22,30), (1,25)(2,18)(3,27)(4,20)(5,29)(6,22)(7,31)(8,24)(9,17)(10,26)(11,19)(12,28)(13,21)(14,30)(15,23)(16,32), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,25)(2,10)(3,19)(5,29)(6,14)(7,23)(9,17)(11,27)(13,21)(15,31)(18,26)(22,30), (1,25)(2,18)(3,27)(4,20)(5,29)(6,22)(7,31)(8,24)(9,17)(10,26)(11,19)(12,28)(13,21)(14,30)(15,23)(16,32), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,25),(2,10),(3,19),(5,29),(6,14),(7,23),(9,17),(11,27),(13,21),(15,31),(18,26),(22,30)], [(1,25),(2,18),(3,27),(4,20),(5,29),(6,22),(7,31),(8,24),(9,17),(10,26),(11,19),(12,28),(13,21),(14,30),(15,23),(16,32)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | C8 | D4 | M4(2) | C23.C8 |
kernel | C2×C23.C8 | C23.C8 | C2×M5(2) | C22×M4(2) | C22×C8 | C2×M4(2) | C23×C4 | C22×C4 | C24 | C2×C8 | C2×C4 | C2 |
# reps | 1 | 4 | 2 | 1 | 2 | 4 | 2 | 12 | 4 | 4 | 4 | 4 |
Matrix representation of C2×C23.C8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,13,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C2×C23.C8 in GAP, Magma, Sage, TeX
C_2\times C_2^3.C_8
% in TeX
G:=Group("C2xC2^3.C8");
// GroupNames label
G:=SmallGroup(128,846);
// by ID
G=gap.SmallGroup(128,846);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,2019,1411,102,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=1,e^8=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations